leetcode_largest_rectangle_in_histogram

难度:Hard

写一个更简洁的,使用栈s,存储一个递增序列的index。当heights[i] < heights[s.top()]时,此时可以计算以heights[s.top()]为高度的长方形。长度的计算要细心,把top元素pop掉后,如果s为空,则长度为i;如果不为空,则长度为i-s.top()-1。不能用i-上一个top掉元素+1,因为某时刻栈中,两个相邻的元素,不一定在vector中也相邻。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
class Solution {
public:
int largestRectangleArea(vector<int>& heights) {
int res = 0;
heights.push_back(0);
stack<int> s;
for(int i = 0; i < heights.size(); i++)
{
// cout<<"i:"<<i<<" height: "<<heights[i]<<endl;
while(!s.empty() && heights[s.top()] > heights[i])
{
int cur_i = s.top();
s.pop();
int area = heights[cur_i]*(s.empty()?i:i-s.top()-1);
// cout<<"area: "<<area<<endl;
res = max(res,area);
}
s.push(i);
}
return res;
}
};

解题思路:此题和最大存水量类似。使用两个栈、数组,记录当前元素为高度时,左边能扩展多少个元素,右边能扩展多少个元素。则当前元素能组成的最大存水量,即高度*(左边个数+右边个数+1)。遍历时,记录下最小值,在寻找左右可以扩展元素的个数时,如果当前元素<=最小值,则遍历过的元素都可以扩展,从而优化算法。

元素            1 2 3 4 5 1 
左边可以扩展    0 0 0 0 0 5
右边可以扩展    5 3 2 1 0 0

代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
class Solution {
public:
int largestRectangleArea(vector<int>& heights) {
if(heights.size()==0) return 0;
vector<int> right_count (heights.size(),0);
vector<int> left_count (heights.size(),0);
int right_min = heights[heights.size()-1];
int left_min = heights[0];
for(int i = heights.size()-2; i >= 0; i--)
{
if(heights[i] > heights[i+1])
right_count[i] = 0;
else if(heights[i] == heights[i+1])
right_count[i] = right_count[i+1]+1;
else
{
if(heights[i] <= right_min)
{
right_count[i] = heights.size()-i-1;
right_min = min(right_min, heights[i]);
}
else
{
int j = i+1;
for(; j < heights.size(); j++)
{
if(heights[j] < heights[i])
break;
}
right_count[i] = j-i-1;
}
}
}
for(int i = 1; i <= heights.size()-1; i++)
{
if(heights[i] > heights[i-1])
left_count[i] = 0;
else if(heights[i] == heights[i-1])
left_count[i] = left_count[i-1]+1;
else
{
if(heights[i] <= left_min)
{
left_count[i] = i;
left_min = min(left_min, heights[i]);
}
else
{
int j = i-1;
for(; j >= 0; j--)
{
if(heights[j] < heights[i])
break;
}
left_count[i] = i-j-1;
}
}
}
int max_area = 0;
for(int i = 0; i < heights.size(); i++)
{
// cout<<"left_count"<<left_count[i]<<" ";
// cout<<"right_count"<<right_count[i]<<endl;
int count = left_count[i]+right_count[i]+1;
int area = count*heights[i];
if(area > max_area)
max_area = area;
}
return max_area;
}
};

运行结果:16ms,超过92.67%